WHA1 Highload Anchors

Ultimate performance anchor for cracked concrete and seismic conditions

Anchor types

WHA1H 12x85 WHA1H 12x125 WHA1H 15x110 WHA1H 15x136 WHA1H 18x117 The WHA1 highload anchors are the ultimate torquecontrolled anchors for heavy to very heavy loads. They are approved for use in cracked and noncracked concrete under normal and seismic conditions. The WHA1H anchors have a hexagon bolt head.

Features and benefits

- ETA Option 1 approval for cracked and non-cracked concrete
- Seismic performance categories C1 and C2 for design Very high load capacity of anchorages under seismic action
- Fire resistance class R30-R120 for design of anchorages under exposure to fire

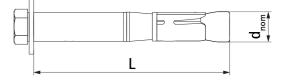
Approvals and certificates

- European Technical Assessment
- Fire Test Report

ETA-16/0562, 15 July 2016 ETA-16/0562, 15 April 2016

Suitable base materials

- Non-cracked concrete, C20/25 to C50/60
- Cracked concrete, C20/25 to C50/60
- Fire-exposed concrete, C20/25 to C50/60
- Concrete under seismic C1/C2 action, C20/25 to C50/60


Typical applications

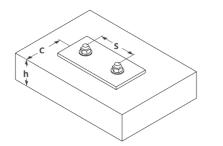
- Structural steel
- Barriers and safety systems
- Heavy plant machinery
- Façade systems
- Cladding

Product details

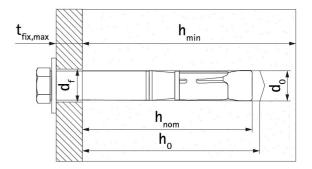
Article	Description	Size	Length	External diameter	Max fixture thickness	Fixture hole clearance
		[-]	L [mm]	d _{nom} [mm]	t _{fix,max} [mm]	d _f [mm]
609832120	WHA1H 12x85	M8	85	12	10	14
609832121	WHA1H 12x125	M8	125	12	50	14
609832150	WHA1H 15x110	M10	110	15	15	17
609832151	WHA1H 15x136	M10	136	15	45	17
609832180	WHA1H 18x117	M12	117	18	10	20

Packaging details

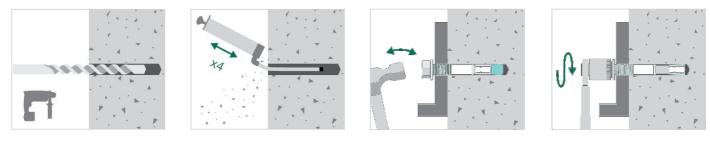
Article	Description	Pack 1				
Article	Description	[pcs]	EAN13			
609832120	WHA1H 12x85	50	8712993157020			
609832121	WHA1H 12x125	25	8712993157037			
609832150	WHA1H 15x110	25	8712993144174			
609832151	WHA1H 15x136	25	8712993144181			
609832180	WHA1H 18x117	20	8712993144198			


Mechanical properties

Component	Material
Washer	Steel, strength class 8.8, EN ISO 898-1:2013
Distance sleeve	Precision steel tube, DIN 2394/2393
Plastic ring	Polyethylene
Expansion sleeve	Steel, EN 10139: 1997
Threaded code	Steel, Strength class 8, EN ISO 898-2:2012
Hexagon head screw	Steel, strength class 8.8, EN ISO 898-1:2013



Installation parameters


Anchor Type	WHA1				
Anchor Size			M8	M10	M12
Drill hole diameter	do	[mm]	12	15	18
Nominal embedment depth	h _{nom}	[mm]	70	85	95
Effective embedment depth	h _{ef}	[mm]	60	71	80
Depth of drill hole	h ₀	[mm]	80	95	105
Tightening torque	Tinst	[Nm]	30	50	80
Min. concrete member thickness	h _{min}	[mm]	120	140	160
Minimum anabar anaping	Smin	[mm]	60	70	80
Minimum anchor spacing	for C≥	[mm]	100	120	160
Minimum odgo distanco	C _{min}	[mm]	60	70	80
Minimum edge distance	for S≥	[mm]	120	175	200

Instructions for installation in concrete

Recommended loads in C20/25 concrete for single anchors¹⁾

Anchor Type Anchor size			WHA1			
			M8	M10	M12	
Tension						
Non-cracked concrete	Nrec	[kN]	9.52	14.29	17.20	
Cracked concrete	Nrec	[kN]	5.71	7.62	12.26	
Shear						
Non-cracked concrete	V _{rec}	[kN]	15.90	20.50	24.50	
Cracked concrete	V _{rec}	[kN]	17.10	27.40	34.40	
Bending moment	Mrec	[Nm]	17.10	34.30	60.00	

1) Single anchors are anchors not affected by concrete edge and anchor spacing influence.

2) Recommended load includes partial safety factor and an overall partial safety factor for action of 1.4. The partial safety factor for action depends on the type of loading and shall be taken from national regulations. All anchor failure modes and the entire relevant product European Technical Assessment must be considered for anchor design.

Recommended values of resistance for seismic action, categories C1 and C2 in C20/25 to C50/60 concrete for single anchors¹⁾

Anchor Type			WHA1		
Anchor size			M8	M10	M12
Seismic Category C1					
Tension load	Nrec,seis,C1	[kN]	8.00	10.70	14.60
Shear load	Vrec,seis,C1	[kN]	7.20	10.80	14.60
Seismic Category C2					
Tension load	Nrec,seis,C2	[kN]	3.60	10.90	14.60
Shear load	Vrec,seis,C2	[kN]	5.10	8.20	12.60

1) Single anchors are anchors not affected by concrete edge and anchor spacing influence.

Characteristic values of resistance to tension and shear load under fire exposure in C20/25 to C50/60 concrete¹⁾

Anchor Type			WTB1	
Anchor Size		M8	M10	M12
Steel failure, R30				
Tension load	N _{Rk,s,fi} [k	N] 1.90	4.30	6.30
Shear load without lever arm	V _{Rk,s,fi} [k	N] 1.90	4.30	6.30
Shear load with lever arm	M ⁰ Rk,s,fi [N	m] 2.00	5.60	9.70
Steel failure, R60	-			
Tension load	N _{Rk,s,fi} [k	N] 1.50	3.20	4.60
Shear load without lever arm	V _{Rk,s,fi} [k	N] 1.50	3.20	4.60
Shear load with lever arm	M ⁰ Rk,s,fi [N	m] 1.50	4.10	7.20
Steel failure, R90	-			
Tension load	N _{Rk,s,fi} [k	N] 1.00	2.10	3.00
Shear load without lever arm	V _{Rk,s,fi} [k	N] 1.00	2.10	3.00
Shear load with lever arm	M ⁰ _{Rk,s,fi} [N	m] 1.00	2.70	4.70
Steel failure, R120				
Tension load	N _{Rk,s,fi} [k	N] 0.80	1.50	2.00
Shear load without lever arm	V _{Rk,s,fi} [k	N] 0.80	1.50	2.00
Shear load with lever arm	M ⁰ Rk,s,fi [N	m] 0.80	1.90	3.10

The characteristic resistances for pull-out failure, concrete cone failure, concrete pry-out and concrete edge failure can be calculated according to TR020 / CEN/TS 1992-4 If the fire attack is from more than one side, the edge distance of the anchor has to be \geq 300 mm and \geq 2 x h_{ef}

